外表上看上去左右对称的人体,内脏却不是左右对称的。大多数人心脏位置偏左,肝脏在右侧,胃和脾在左侧,右肺有三叶而左肺只有两叶。但有极少数的人的内脏的左右是相反的。胚胎发育时是如何判断左右的呢?科学家们在逐渐揭开胚胎发育时判断方向的谜团。1788年的一天,伦敦亨特利安医学院的学生在解剖一具尸体的时候发现了一件令人震惊不已的事情。
死者的生理结构和普通人的结构呈镜像对称——他的肝脏没有长在身体的右边而长在了左边,心脏曾在他的右侧跳动而非左侧。学生们从来没有见过类似的事情,便急忙找来了他们的老师,苏格兰外科医师马修·贝利。同样被震惊到了的贝利尔后写道:“这可真是连最有名望的解剖学家都难以见到的非凡景象。”内脏逆位的遗传呈现出了常染色体隐性遗传的特点,在不同族裔中出现的比例有区别。
从对称发育成不对称贝利的报告是第一份对于这种症状的详细描写,该症状尔后作为内脏逆位渐渐为人所知,大概每两万人出现一例。贝利提出,如果医生们能够研究清楚这种奇怪的症状是如何形成的,那他们也将能得以理解我们的身体是如何区分左右的。大约两个世纪过去了,人体内脏的左右生长之迷依旧令科学家们着迷。“我知道什么靠左什么靠右,你知道什么靠左什么靠右,可是胚胎要怎么知道呢?
”英国医学研究理事会的发育生物学家多米尼克·P·诺里斯这样问道。如今诺里斯博士和其他科学家正着手解答这个问题。他们已经确切地找出了胚胎器官开始左右不对称发育的几个阶段。他们的研究除了能为我们解开这个古老的谜题以外,在相关领域或许还会有更多的建设。导致内脏逆位的突变能引发包括先天性心脏缺陷等一系列严重病症。成功解读这些突变基因的作用效果或许能使许多相关症状的诊断和治疗成为可能。
“理解内脏发育的中轴是如何搭建起来的会为我们理解先天性心脏缺陷带来许多启发。”普林斯顿的分子生物学家丽贝卡·伯丁这样讲道。我们的身体一开始是对称着发育的,左侧是右侧完美的镜像。“大约在六个星期左右人体内就会出现可观测到的左右不对称的迹象。”上个月刚刚在Open Biology期刊上发表了一篇关于左右不对称评论文章的新加坡分子与生物细胞研究院的苏蒂托·罗伊说。心脏是第一个显现出可见不对称的器官。
从简单的一个管状结构开始,它向左弯曲成环,再逐渐在两侧生长出不同的结构,形成泵血所需的心房心室与血管。同时,其它器官也开始了移动。胃脏与肝脏分别顺时针地从胚胎的中线移开。大肠在其右侧生长出阑尾。右肺长出三片肺叶,左侧只长两片。但这些可见的变化都是在胚胎发育出自己的左右差别相当一段时间之后才出现的。实验显示,在看着还是对称的时候,胚胎就开始向两侧生产不同的蛋白质了。
生物学家们已经找到了打破这个对称的关键部位:胚胎中线上一个叫做节点的小凹陷。节点的内部有着数百根被称为纤毛的细小的绒毛,它们以每秒10次的速率不断地回旋着。这些旋转的纤毛朝头部的反方向倾斜开。这个倾斜对于它们为身体划分左右的能力来讲是至关重要的。最近纪念斯隆-凯特灵癌症中心的凯瑟琳·V·安德森和她的同事令节点内纤毛倾斜所须的基因失效。
尔后他们在《发育学》期刊中报告道,基因失效后的变异导致了一些小鼠胚胎发育成了镜像对称的结构。纤毛的倾斜是至关重要的,因为胚胎的周身被包围在一层薄薄的液体之中;如果这些纤毛是笔直的,它们会向各个方向推挤这液体,从而不让液体产生任何流动。“这就像搅拌器,”诺里斯博士讲道,“液体在里面一圈又一圈地流动。”倾斜的纤毛将液体从右向左地沿同一方向推挤。
当科学家们将这种流动的方向逆转后,结果胚胎中器官的位置也发生了逆转。要开始一个胚胎的正常发育所需要的只是一个非常微弱的向左的流动:日本大阪大学的科学家们发现仅仅两根转动的纤毛就足以胜任。于是这就又产生了一个问题:“如果我们并不需要那么多纤毛的话,那么长这么多纤毛究竟是作什么用的?”就如诺里斯教授所言,“我们不知道。”胚胎外的液体一流起来,只需三至四个小时就可以完成对于左右的划分。
至于其间具体的变化步骤,科学家们也只是有一个粗略的了解。在第一步中,液体流经节点、一直流到其左侧的边缘。边缘上环绕着不旋转的纤毛。它们通过某种方式对液流做出反应,可能直接弯曲,也可能由液流传递某些蛋白质。“我们还不知道其中详尽的细节,”诺里斯博士讲道,“不知道此刻这些细胞中的运作机制是怎么样的。
”先不管这些细节,总之节点边缘上的纤毛对液流做出了反应——有可能是通过释放扩散到附近细胞中去的钙原子实现的。这些细胞会因此释放出一种叫做Nodal的蛋白质。这种蛋白质会在胚胎的左侧扩散开来,并促使其它细胞也释放自己的Nodal蛋白质,从而使整个胚胎的左侧通过这种机制充满了Nodal蛋白质,而右侧则几乎没有。“Nodal蛋白质促生Nodal蛋白质,我们就这么起步了。”诺里斯博士讲道。
科学家们如今仍在研究着Nodal蛋白质是如何决定人体生理结构的。近年来,许多研究者们使用胚胎透明的斑马鱼取代了老鼠作为实验对象;斑马鱼胚胎中的细胞可由基因工程改造为会发光的,从而使器官的形成得以被观测到。普林斯顿的伯丁博士研究胚胎细胞围绕器官迁移时Nodal蛋白质是如何促使斑马鱼心脏的生理结构成型的。“Nodal蛋白质似乎是直接指示左侧的细胞比右侧更快地移动。
”正如她和她的同事在《科学公共图书馆.遗传学》一月刊中报告的那样,左侧快速移动着的细胞会顺时针地拉扯整个心脏。由这个初始的扭动开始,心脏便逐渐发育出明显不同的左右两侧。有些研究表示,这些早期的信号同样会影响脑部的发育。科学家们很久以前便认识到人类左右两侧的大脑有着重要的区别。比如右半脑在理解他人精神生活方面有着重要的作用;左半脑则对于注意力的集中来讲至关重要。
其它脊椎动物也有着左右脑之间的差别,但这种不平衡的结构是如何起源的对我们仍然是一个谜。“我认为在脊椎动物之中,我们了解最多的就是斑马鱼了。”范德堡大学的生物学家约书亚·T·盖姆斯说。盖姆斯博士和其他研究者发现,Nodal蛋白质会刺激鱼脑中一个小的部位从而使鱼脑的左右两侧的生长有所不同。这一点的不同其后会向外发散至大脑的其它部分。但至于人类和其它哺乳动物是否也有着类似的发育模式我们就不太清楚了。
在着眼于这些生物信号的同时,科学家们同样也在研究着那些或许与左右不对称信号被干扰有关的发育异常。内脏逆位,贝利在1788年所描述的这种内脏完全反转的症状大概是此类发育异常中最有戏剧性,却又是最无害的。“身体的对称轴完全反转的人可以很正常的生活,如果不是你的医生发现你心脏位置有误的话,不会有人会注意到。”伯丁博士这样讲道。这种完全的逆位症状要相对安全,因为所有的器官相对还排列正常。
“你可以看看镜子中自己,看着很正常,”诺里斯博士讲道,“你不会因为反着看自己,就觉得自己变得不像人类了。”真正的危险在于不完全的内脏逆位。——“当内脏间变得混乱,彼此之间变得互不相配的时候,”诺里斯教授这样形容道。最令人担心的情况就是心脏受到影响。“如果你把心脏放错了位置,而其它器官在正确的位置,”伯丁博士讲道,“那几乎一定是致命。
”在其它案例中,心脏正确地长在了身体的左侧,但心脏内部的结构——瓣膜与心房心室——长错了位置。这种症状未必是直接致命的,但在以后的生活中会变得危险,需要复杂的手术才能将心脏的结构修改回来。伯丁博士希望这些关于内脏左右逆位的研究日后可以带来能预测不易察觉的心脏缺陷的遗传测试。她还看好尝试用干细胞重建受损心脏的应用。
“这将不光是制造‘正确的’细胞,”她说,还需要将这些细胞放置在生物体三维结构中正确的位置上,并且给予它们正确的信号,让它们向着正确的方向生长发育。“而在这些信号当中,”她说,“左右方向的信号是其中之一。”